A Genetic Algorithm with Neutral Mutations for Deceptive Function Optimization
نویسندگان
چکیده
منابع مشابه
Towards a Genetic Algorithm for Function Optimization
This article analyses a version of genetic algorithm (GA, Holland 1975) designed for function optimization, which is simple and reliable for most applications. The novelty in current approach is random provision of parameters, created by the GA. Chromosome portions which do not t ranslate into fitness are given function to diversify control parameters for the GA, providing random parameter sett...
متن کاملA Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
متن کاملA Genetic Algorithm for Function Optimization: A Matlab Implementation
A genetic algorithm implemented in Matlab is presented. Matlab is used for the following reasons: it provides many built in auxiliary functions useful for function optimization; it is completely portable; and it is eecient for numerical computations. The genetic algorithm toolbox developed is tested on a series of non-linear, multi-modal, non-convex test problems and compared with results using...
متن کاملErratum: A Species Conserving Genetic Algorithm for Multimodal Function Optimization
This paper introduces a new technique called species conservation for evolving parallel subpopulations. The technique is based on the concept of dividing the population into several species according to their similarity. Each of these species is built around a dominating individual called the species seed. Species seeds found in the current generation are saved (conserved) by moving them into t...
متن کاملA Grid-based Genetic Algorithm for Multimodal Real Function Optimization
A novel genetic algorithm called GGA (Grid-based Genetic Algorithm) is presented to improve the optimization of multimodal real functions. The search space is discretized using a grid, making the search process more efficient and faster. An integer-real vector codes the genotype and a GA is used for evolving the population. The integer part allows us to explore the search space and the real par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1996
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.32.1461